- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chalmoukis, Nikolaos (1)
-
Hartmann, Andreas (1)
-
Kellay, Karim (1)
-
Wick, Brett Duane (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We discuss random interpolating sequences in weighted Dirichlet spaces $${{\mathcal{D}}}_\alpha $$, $$0\leq \alpha \leq 1$$, when the radii of the sequence points are fixed a priori and the arguments are uniformly distributed. Although conditions for deterministic interpolation in these spaces depend on capacities, which are very hard to estimate in general, we show that random interpolation is driven by surprisingly simple distribution conditions. As a consequence, we obtain a breakpoint at $$\alpha =1/2$$ in the behavior of these random interpolating sequences showing more precisely that almost sure interpolating sequences for $${{\mathcal{D}}}_\alpha $$ are exactly the almost sure separated sequences when $$0\le \alpha <1/2$$ (which includes the Hardy space $$H^2={{\mathcal{D}}}_0$$), and they are exactly the almost sure zero sequences for $${{\mathcal{D}}}_\alpha $$ when $$1/2 \leq \alpha \le 1$$ (which includes the classical Dirichlet space $${{\mathcal{D}}}={{\mathcal{D}}}_1$$).more » « less
An official website of the United States government
